APPENDIX

Photometer measurements on spots of non-uniform density

In the following, the clear-base transparency is taken as unity.

Suppose the spot is divided into areas A_{1}, A_{2}, \ldots, A_{r}, \ldots, A_{n} with corresponding transparencies t_{1}, t_{2}, $\ldots, t_{r}, \ldots, t_{n}$. The total X-ray intensity causing this spot is proportional to (area \times density) and is given by $T=\Sigma A_{\tau} \log \left(1 / t_{\tau}\right)$, where r has the values 1 to n. Assuming that density variation across the spot is small, we may write $t_{r}=t_{1}+\Delta_{r}$, where Δ_{r} is small. Then

$$
\log \frac{1}{t_{r}}=\log \frac{1}{t_{1}+\Delta_{r}}=\log \frac{1}{t_{1}}-2 \cdot 3 \frac{\Delta_{r}}{t_{1}}
$$

if we ignore terms in $\left(\Delta_{r}\right)^{2}$ etc. Thus

$$
T=\Sigma A_{r}\left(\log \frac{1}{t_{1}}-2 \cdot 3 \frac{\Delta_{r}}{t_{1}}\right)=A \log \frac{1}{t_{1}}-2 \cdot 3 \Sigma \frac{A_{r} \Delta_{r}}{t_{1}}
$$

where A is the total spot area.
The photometer reading β corresponds to an effective mean transparency for the spot given by $\bar{t}=\Sigma A_{r} t_{r} / \Sigma A_{r}$ and hence to a mean density $\bar{D}=\log (1 / \bar{t})$.

Thus

$$
\bar{D}=\log \left(\frac{\sum A_{r}}{\sum A_{r} t_{r}}\right)=\log \left(\frac{\sum A_{r}}{\sum\left(A_{r} t_{1}+A_{r} \Delta_{r}\right)}\right)
$$

which reduces on expansion, ignoring terms in $\left(\Delta_{r}\right)^{2}$ etc., to

$$
\begin{aligned}
\bar{D} & =\log A-\log A t_{1}-2 \cdot 3 \frac{\Sigma A_{r} \Delta_{r}}{A t_{1}} \\
& =\log \frac{1}{t_{1}}-2 \cdot 3 \frac{\Sigma A_{r} \Delta_{r}}{A t_{1}}
\end{aligned}
$$

Thus the product of total area and mean density, $A \bar{D}$, is equal to T above.

Hence, under the above conditions, the transmission reading β is based upon a mean transparency which would lead to a true value of X-ray intensity, and thus the arguments in § 2 for a uniform spot are valid also for one across which the density variation is small.

References

Dawton, R. H. V. M. (1937). J. Sci. Instrum. 14, 198.
Dawton, R. H. V. M. (1938). Proc. Phys. Soc., Lond. 50, 919.

Kafn, G. \& Cole, W. F. (1949). Acta Cryst. 2, 38.
Robertson, J. M. \& Dawton, R. H. V. M. (1941). J. Sci. Instrum. 18, 126.
Robinson, B. W. (1933). J. Sci. Instrum. 10, 233.
Wiebenga, E. H. (1947). Rec. Trav. chim. Pays-Bas, 66, 746.

An X-ray Study of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ III

By D. R. Das Gupta
X-ray Department, Indian Association for the Cultivation of Science, Calcutta-32, India

(Received 11 September 1953 and in revised form 16 November 1953)
The determination of the crystal system of $\mathrm{Na}_{2} \mathrm{SO}_{4} \mathrm{III}$ was made directly from the powder pattern. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ III was found to belong to the tetragonal system with $a=b=13.45 \AA$ and $c=7.879 \AA$, with 16 molecules in the unit cell.

Introduction

Of the five forms of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ indicated by the thermal analysis, Kracek \& Kasanda (1930) studied the spacing of only three by the X-ray diffraction method, namely (1) $\mathrm{Na}_{2} \mathrm{SO}_{4} \mathrm{~V}$ or thenardite, stable at ordinary temperatures, (2) $\mathrm{Na}_{2} \mathrm{SO}_{4} \mathrm{I}$, stable only above $245^{\circ} \mathrm{C}$., and (3) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ III, stable below $185^{\circ} \mathrm{C}$. Colby (1931) found $\mathrm{Na}_{2} \mathrm{SO}_{4} \mathrm{~V}$ to belong to the orthorhombic spacegroup $F d d d$. However, no definite information about the other two forms can be found. It was seen by us that Fravel's (1940) suggestion that $\mathrm{Na}_{2} \mathrm{SO}_{4}$ III is orthorhombic is not consistent with all the lines of the powder pattern, and Lipson's (1949) method applied by us further showed that it certainly does not belong
to the orthorhombic system. The main difficulty in finding the actual crystal class of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ III lies in the fact that no single crystal of appreciable size can be obtained so that standard methods cannot be applied.

Recently Hesse (1948) suggested a novel method for indexing powder photographs. Stosick (1949) made some modifications of Hesse's idea and treated the case in the general way. He showed that if there be any equation of the type $m_{1} q_{1}=m_{2} q_{2}$, where q 's are the $\sin ^{2} \theta$ values and m 's are integers, the crystal system must be either (a) tetragonal, (b) hexagonal or (c) cubic, of which the last can be recognized immediately from the pattern itself. When $m_{1} q_{1}=m_{2} q_{2}$ one can have $m_{1} M_{1}=m_{2} M_{2}$ (l being zero), where $M=h^{2}+k^{2}$ or
$h^{2}+h k+k^{2}$ for tetragonal and hexagonal crystals respectively; and actually the ratio $m_{1}: m_{2}$ determines whether the crystal is tetragonal or hexagonal. The system having been determined, the constants A and C in the equation $q=A M+C N$ (where $N=l^{2}$) can be found and all the lines can then be indexed.

Experimental

Anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or thenardite was prepared as suggested by Kracek (1929) and freed from alcohol and water. This was powdered and introduced into a thin glass capillary tube, the ends being sealed after filling. After heating this stick to about $500^{\circ} \mathrm{C}$. it was brought back to the original temperature, when thenardite transformed into $\mathrm{Na}_{2} \mathrm{SO}_{4}$ III. X-ray powder photographs were taken with a cylindrical camera of radius 3.92 cm. , using $\mathrm{Cu} K \alpha$ rays from a Hadding tube run at $50-60 \mathrm{kV}$. and 15 mA . The exposure was about 6 hr . The d values (Table l) found by us are in good agreement with those found by Kracek \& Kasanda (1930) and also with those found by Hanawalt, Rinn \& Fravel (1938).

Determination of the crystal class

It was seen from the $\sin ^{2} \theta$ values (Table 1) that
(1) $9 q_{1}=8 q_{2}$,
(2) $q_{10}=5 q_{1}$,
(3) $q_{8}=4 q_{1}$ and
(4) $5 q_{8}=4 q_{10}$.

These relations are of the form $m_{1} q_{1}=m_{2} q_{2}$. Hence the powder pattern must correspond to either the tetra-. gonal, the hexagonal or the cubic system. That it is not cubic is definitely seen from the pattern itself. Moreover, $q_{1}+q_{8}=q_{10}, q_{8}+q_{10}=q_{17}$, which also show that it must be either tetragonal or hexagonal (Stosick, 1949). From the observed relations it will be found that
(a) $9 M_{1}=8 M_{2}$,
(b) $M_{10}=5 M_{1}$,
(c) $M_{8}=4 M_{1}$,
whence the sequence of the M values ($1,4,5,8,9$) decides in favour of the tetragonal system. The relation (a) requires that M_{1} must be equal to 8 or some multiple of it. Taking $M_{1}=8, A$ becomes equal to 0.003275 . Then $q_{4}-A M_{4}$, with $M_{4}=1$, equals $0.0382=q_{3}$. Let the M values for q_{3} be taken as zero, then $C l_{4}^{2}=C l_{3}^{2}$. With $l_{3}=1, l_{4}$ is also 1 , but all the lines of the powder pattern cannot be indexed with these values. But when $l_{3}=2$, and $l_{4}=2, C$ comes out to be $0.0382 / 4=0.0095$. With these values of A and C, all the lines of the powder pattern of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ III can be indexed. The axial lengths a and c can be found directly by solving the equation $a=\frac{1}{2} \lambda / V A$ and $c=\frac{1}{2} \lambda / V C$. The $h k l$ values for all the lines are shown in Table 1 and the axial lengths of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ III crystal come out as

$$
a=b=13.45 \AA, c=7.879 \AA
$$

Table 1. Observed spacings, hkl values and observed and calculated $\sin ^{2} \theta$ values

$d_{0}(\AA)$	$\left(\sin ^{2} \theta\right){ }_{0}$	$M=h^{2}+k^{2}$	$N=l^{2}$	$h k l$	$\left(\sin ^{2} \theta\right)_{c}$
4.757	$0 \cdot 0262$	8	0	220	0.0262
$4 \cdot 477$	0.0295	9	0	300	0.0295
3.941	0.0382	0	4	002	0.0382
$3 \cdot 780$	0.0415	1	4	102	0.0415
$3 \cdot 410$	0.0510	4	1	201	0.0510
$2 \cdot 804$	0.0751	20	1	241	0.0751
$2 \cdot 630$	0.0856	0	9	003	0.0855
$2 \cdot 376$	$0 \cdot 1049$	32	0	440	$0 \cdot 1048$
$2 \cdot 239$	$0 \cdot 1182$	10	9	133	$0 \cdot 1182$
$2 \cdot 125$	0.1311	40	0	260	0.1310
2.074	$0 \cdot 1378$	16	9	403	$0 \cdot 1379$
1.954	0.1552	1	16	104	0.1553
$1 \cdot 877$	$0 \cdot 1680$	5	16	124	$0 \cdot 1682$
1.743	$0 \cdot 1950$	13	16	234	0.1948
$1 \cdot 690$	$0 \cdot 2076$	17	16	144	0.2076
$1 \cdot 614$	$0 \cdot 2277$	58	4	372	0.2277
1.585	$0 \cdot 2360$	72	0	660	$0 \cdot 2360$
$1 \cdot 559$	0.2438	2	25	115	0.2440
1.528	0.2538	5	25	125	0.2538
$1 \cdot 480$	$0 \cdot 2704$	10	25	135	$0 \cdot 2704$
$1 \cdot 443$	$0 \cdot 2830$	40	16	264	$0 \cdot 2830$
$1 \cdot 398$	$0 \cdot 3031$	20	25	245	0.3031
$1 \cdot 369$	$0 \cdot 3162$	85	4	292	0.3165
$1 \cdot 310$	$0 \cdot 3456$	1	36	106	0.3457
$1 \cdot 290$	$0 \cdot 3563$	36	25	605	0.3566
1.224	$0 \cdot 3960$	121	0	11,0,0	0.3962
$1 \cdot 205$	$0 \cdot 4081$	20	36	246	0.4081
$1 \cdot 170$	0.4322	106	9	593	0.4321
1-124	0.4692	117	9	693	$0 \cdot 4692$
1.089	0.4999	106	16	594	0.4999
$1 \cdot 059$	0.5283	89	25	585	0.5286
1.050	0.5370	164	0	10,8,0	0.5371
1.039	0.5483	121	16	11,0,4	0.5483
1.007	0.5845	74	36	576	0.5844

From the axial lengths for $\mathrm{Na}_{2} \mathrm{SO}_{4}$ III given in the previous section and the density ($2.69 \mathrm{~g} . \mathrm{cm} .^{-3}$) the unit cell contains 16 molecules. As the number of reflecting planes in a powder pattern is limited it is difficult to assign any definite space group to $\mathrm{Na}_{2} \mathrm{SO}_{4}$ III from this study.

The author wishes to express his sincerest gratitude to Prof. K. Banerjee, D.Sc., for his kind guidance and to Dr A. Bose and Dr B. K. Banerjee for their keen interest in the work.

References

Colby, M. Y. (1931). Z. Kristallogr. 77, 49.
Fravel, L. K. (1940). J. Chem. Phys. 8, 290.
Hanawalt, J. D., Rinn, H. W. \& Fravel, L. K. (1938). J. Industr. Engng. Chem. 10, 506.

Hesse, R. (1948). Acta Cryst. 1, 200.
Kracek, F. C. (1929). J. Phys. Chem. 33, 1284.
Kracek, F. C. \& Kasanda, C. J. (1930). J. Phys. Chem. 34, 1741.
Lipson, H. (1949). Acta Cryst. 2, 43.
Stosick, A. J. (1949). Acta Cryst. 2, 271.

